Error bounds for Gauss-Turán quadrature formulae of analytic functions
نویسندگان
چکیده
منابع مشابه
Error bounds for Gauss-Tur'an quadrature formulae of analytic functions
We study the kernels of the remainder term Rn,s(f) of GaussTurán quadrature formulas ∫ 1 −1 f(t)w(t) dt = n ∑
متن کاملError Bounds for Gauss-kronrod Quadrature Formulae
The Gauss-Kronrod quadrature formula Qi//+X is used for a practical estimate of the error R^j of an approximate integration using the Gaussian quadrature formula Q% . Studying an often-used theoretical quality measure, for ߣ* , we prove best presently known bounds for the error constants cs(RTMx)= sup \RlK+x[f]\ ll/(l»lloo<l in the case s = "Sn + 2 + tc , k = L^J LfJ • A comparison with the Ga...
متن کاملOn the error term of symmetric Gauss-Lobatto quadrature formulae for analytic functions
Gauss-Lobatto quadrature formulae associated with symmetric weight functions are considered. The kernel of the remainder term for classes of analytic functions is investigated on elliptical contours. Sufficient conditions are found ensuring that the kernel attains its maximal absolute value at the intersection point of the contour with either the real or the imaginary axis. The results obtained...
متن کاملError Estimates for Gauss Quadrature Formulas for Analytic Functions
1. Introduction. The estimation of quadrature errors for analytic functions has been considered by Davis and Rabinowitz [1]. An estimate for the error of the Gaussian quadrature formula for analytic functions was obtained by Davis [2]. McNamee [3] has also discussed the estimation of error of the Gauss-Legendre quadrature for analytic functions. Convergence of the Gaussian quadratures was discu...
متن کاملSharp Error Bounds for Jacobi Expansions and Gegenbauer-Gauss Quadrature of Analytic Functions
This paper provides a rigorous and delicate analysis for exponential decay of Jacobi polynomial expansions of analytic functions associated with the Bernstein ellipse. Using an argument that can recover the best estimate for the Chebyshev expansion, we derive various new and sharp bounds of the expansion coefficients, which are featured with explicit dependence of all related parameters and val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2003
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-03-01544-8